
재활로봇의 적용 및 최신 치료경향

인제대학교 일산백병원 재활의학과 유지현

상지재활로봇

Grounded exoskeleton

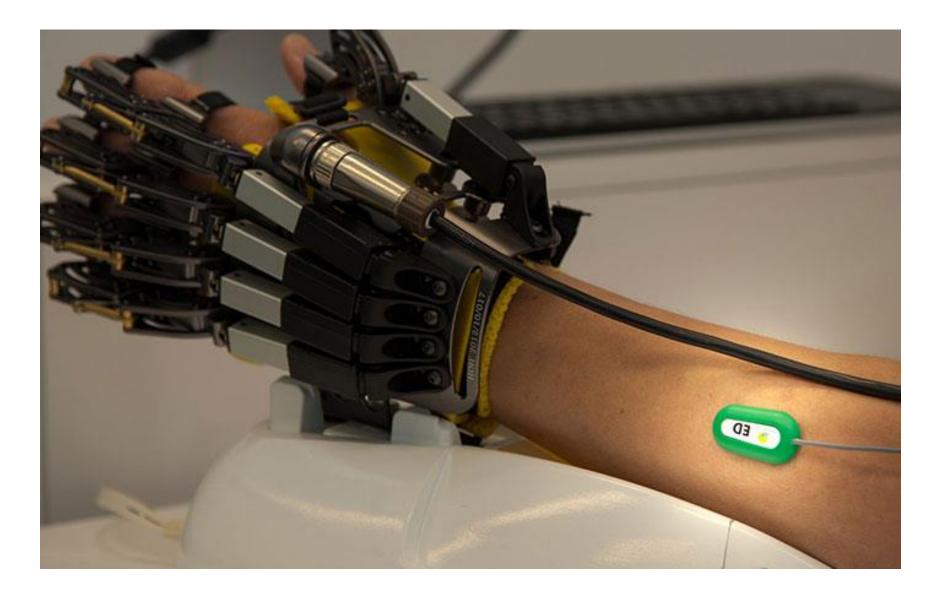
Armeo Power®

ANYexo®

상지재활로봇

Grounded end-effector

InMotion ARM/HAND®



Tenoexo®

Hand of Hope®

DISABILITY AND REHABILITATION: ASSISTIVE TECHNOLOGY 2018, VOL. 13, NO. 7, 704-715 https://doi.org/10.1080/17483107.2018.1425747

REVIEW ARTICLE

Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: a systematic scoping review

Hardeep Singh^{a,b}, Janelle Unger^{a,b}, José Zariffa^{a,b,c} (D), Maureen Pakosh^a, Susan Jaglal^{a,b,d,e}, B. Catharine Craven^{a,b,f} and Kristin E. Musselman^{a,b,d} (D)

^aToronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada; ^bRehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada; ^cInstitute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; ^dDepartment of Physical Therapy, University of Toronto, Toronto, ON, Canada; ^eDepartment of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; [†]Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Toronto, Toronto, ON, Canada

Check for updates

Table 1. Study design details.

Study	Country	Setting	Desi
Kadivar et al. [19]	USA	Outpatient	Case se
Pehlivan et al. [20]	USA	Outpatient	Case st
Vanmulken et al. [22]	Netherlands	Outpatient	Case se
Yozbatiran et al. [42]	USA	Outpatient	Clinical
Zariffa et al. [<mark>43</mark>]	Canada	Inpatient	Case se
Sledziewski et al. [44]	USA	Inpatient	Case st
Yozbatiran et al. [45]	USA	Outpatient	Case st
Yozbatiran et al. [46]	USA	Outpatient	Case st
Cortes et al. [47]	USA	Outpatient	Case se
Hoei et al. [48]	Japan	Outpatient	Case st
Frullo et al. [49]	USA	Outpatient	Case se
Fitle et al. [50]	USA	Outpatient	Case se

Study design

sign

series study series al RCT series study study study series study series series

1 RCT (n=9) 6 Case series (n=17, 5 Case studies	15, 10, 10, 9, 5, 2)
R	СТ
Intervention group	Control group
tDCS + robotic therapy	robotic therapy

Study	Sample size	Participant characteristics	Intervention dose	Co- therapy	Down's and Blacks scor
adivar et al. [19]	2	Chronic C2, C4	RiceWrist	NR	9
	(M,F)	AIS C and D	1–3 hr \times 3 days/week \times 7 and 10 sessions		(P)
		Age: 24, 27 yrs	·		
		TSI: 6.5 months			
ehlivan et al. [<mark>20</mark>]	1	Chronic C3–C5	RiceWrist	No	11
	(M)	AIS C	1 hr \times 4 days/wk \times 3 wks		(M)
		Age: 45 yrs			
		TSI: 83 months			
anmulken et al. [<mark>22]</mark>	5	Chronic C5–C7	Haptic Master	NR	12
	2 drop outs	AIS A(1), B(2)	$1 \text{ hr} \times 3 \text{ days/wk} \times 6 \text{ wks}$		(M)
	(3M)	Age: 25–45 yrs	,		. ,
		TSI: 3.5–15.5 yrs			
ozbatiran et al. [42]	9	Chronic C3–C7	MAHI Exo-II	No	20
· · · · · · · · · ·	1 drop out	AIS C(3), D(5)	10 sessions over 2 wks		(G)
	(7M,1F)	Age: 36–62 yrs			(-)
	(, ,	TSI: 7–244 months			
ariffa et al. [<mark>43</mark>]	15	Subacute C4–C6	Armeo Spring	СТ	17
	3 drop outs (11M,1F)	AIS A(2), B(4), C(1), D(5)	$1 \text{ hr} \times 3-5 \text{ days/wk} \times 6 \text{ wks}$	•	(M)
		Age: 19–75 yrs			(11)
		TSI: 21–173 days			
edziewski et al. [44]	1	Subacute C4	ReoGo	ОТ	11
	(M)	AIS D	$2 \text{ hr} \times 5 \text{ days/wk} \times 4 \text{ wks}$	01	(M)
	(11)	Age: 51 yrs			(141)
		2			
ozbatiran ot al [15]	1	TSI: 26 days Chronic C4	RiceWrist	No	11
ozbatiran et al. [45]	1 (NA)			NO	11
	(M)	AIS D	$3 \text{ hr} \times 10 \text{ consecutive days}$		(M)
		Age: 24 yrs			
a-bativen at al. [4/]	1	TSI: 6.5 months		Na	10
ozbatiran et al. [<mark>46</mark>]		Chronic C2	MAHI Exo-II	No	10
	(F)	AIS C	$3 hr \times 3 days/wk \times 4 wks$		(P)
		Age: 28 yrs			
	10	TSI: 29 months		ND	
ortes et al. [47]	10	Chronic C4–C6	InMotion 3.0 Wrist robot	NR	14
	(8M,2F)	AIS A(3), B(4), C(1), D(2)	1 hr \times 3 days/wk \times 6 wks		(M)
		Age: 17–70 yrs			
		TSI: 2–8 yrs			
oei et al. [<mark>48</mark>]	1	Subacute C3–C6	Reaching Robot	NR	11
	(M)	AIS NR	40 min \times 7 days/wk \times 2 wks		(M)
		Age: 66 yrs			
		TSI: 3 months			
rullo et al. [<mark>49</mark>]	17	Chronic C3–C8	MAHI Exo-II	NR	14
	3 drop outs	AIS C-D	1.5 hr \times 10 sessions		(M)
	(12M, 2F)	Age: mean 53.5 yrs			
		TSI: mean 16 yrs			
tle et al. [<mark>50</mark>]	10	Chronic C2–C6	MAHI Exo-II	NR	8
	2 drop outs	AIS C–D	$2h \times 12$ sessions		(P)
	(8M, 2F)*	Age: NR			
		TSI: NR			

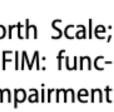
M: male; F: female; TSI: time since injury; AIS: American spinal injury association impairment scale; MAHI: Mechatronics and Haptic Interfaces Lab; yrs: years; wks: weeks; NR: not reported; CT: conventional therapy; OT: occupational therapy; (P): poor; (M): moderate; (G): good; *Fitle et al. did not report sex of participants that dropped out.

Intervention, participant characteristics

Subacute: 1 case series, 2 case studies Chronic: 1 RCT, 5 case series, 3 case studies

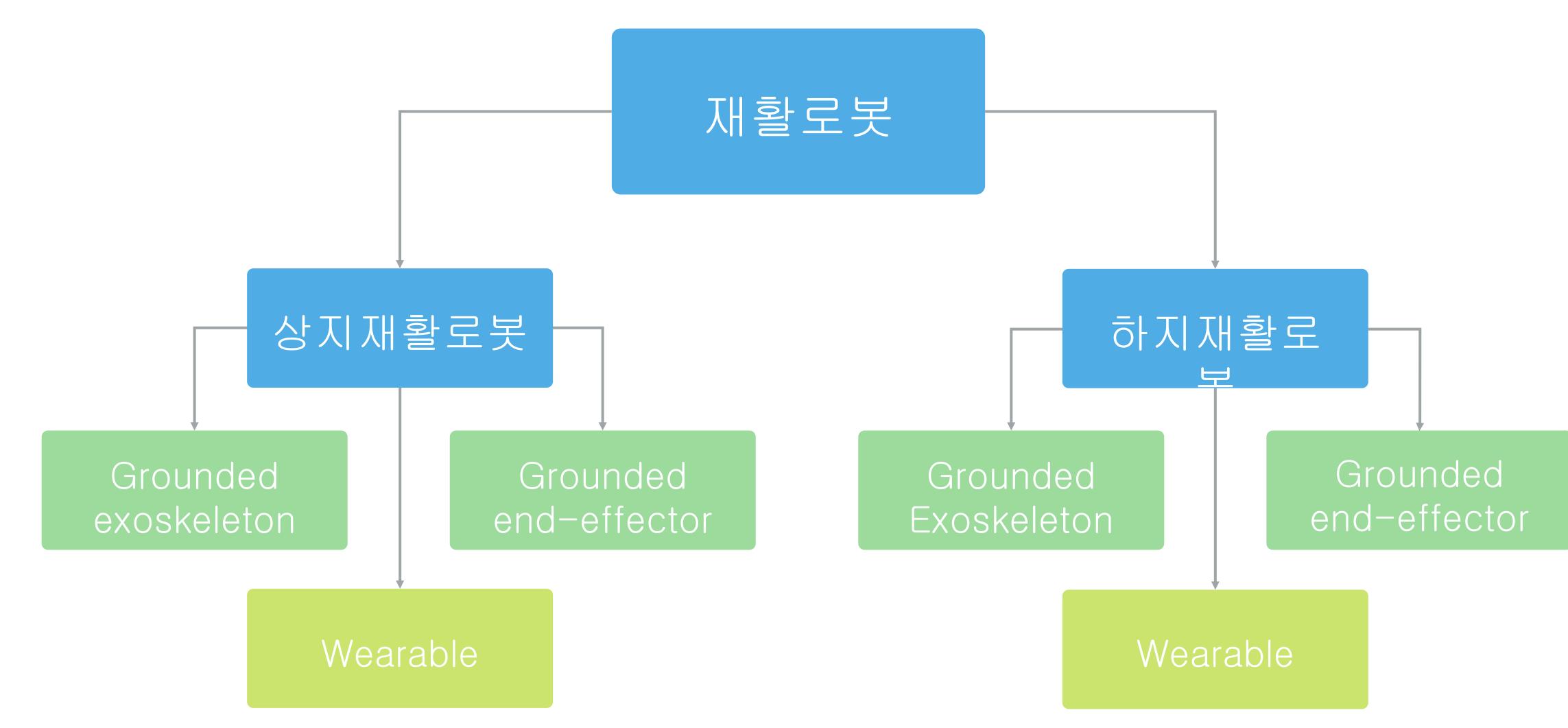
Armeo spring (1) RiceWrist (3) Haptic Master (1) MAHI Exo-II (4) ReoGo₍₁₎ InMotion 3.0 Wrist (1) Reaching robot (1)

Table 4. Results on outcome measures after training.


				Body	y structu	re and fun	ction													
															Activity le	evel				
																				Part
	Cortical excitability	Fs	UEMS	Sensory	ROM	Grip	Pinch	MAS	ICSHT	VLT	GRASSP	FIM	JTHFT	SCIM	ARAT	SIAS	STEF	CUE	USE	AC
Kadivar et al. [19]		+ (m)											+							
	-	nc (s)																		
Pehlivan et al. [20]	-	+	nc			+	+						+		nc					
Vanmulken et al. [22]									nc	+				nc						
Yozbatiran et al. [42]			+					nc					+							
Zariffa et al. [<mark>43</mark>]					nc	nc					+ (m) nc (s)				nc					
Sledziewski et al. [44]			+	nc	+						nc (s)	+						+		
Yozbatiran et al. [45]			+ + (s)	ne	Ŧ	+ (m)	+					+	+					T		
			nc (m)			nc (s)	T					T	Т							
Yozbatiran et al. [46]			+ (m)			110 (3)							+		+ (m)					
			nc (s)										nc (s)		nc (s)					
Cortes et al. [47]	nc	+	nc					nc					110 (3)		110 (5)					
Hoei et al. [48]					+			nc								+	+			
Frullo et al. [49]	1					+	+	nc			+				nc					
Fitle et al. [50]						·		nc					+		+					
													-		-					

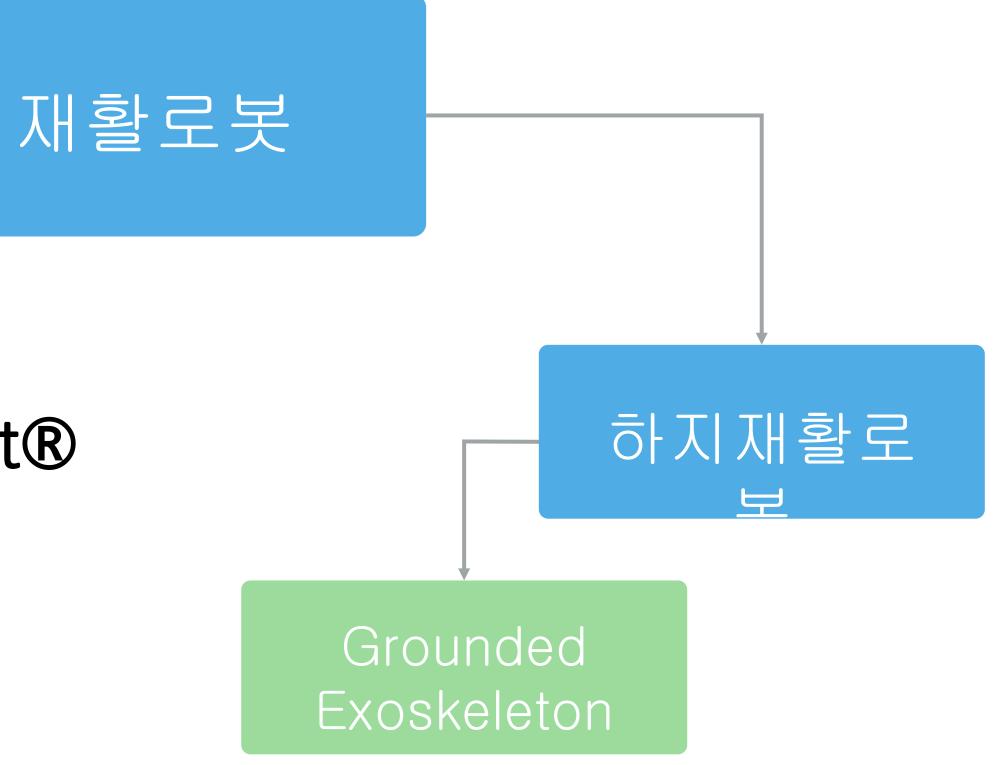
*Improvements did not last at two-month follow-up

(m): mild-moderately impaired side; (s): severely impaired side; nc: no change; +: change; Fs: smoothness of movement; UEMS: upper extremity motor score; ROM: range of motion; MAS: Modified Ashworth Scale; ICSHT: International classification for surgery of the hand in tetraplegia; VLT: Van Lieshout test for UE function in tetraplegia; GRASSP: graded and redefined assessment of strength, sensibility and prehension; FIM: functional independence measure; JTHFT: Jebsen Taylor hand function test; SCIM: spinal cord independence measure; ARAT: action research arm test; SIAS: knee-mouth test and the finger test of the stroke impairment assessment set; STEF: simple test for evaluating hand function; CUE: capabilities of upper extremity instrument; USE: usefulness, satisfaction and ease-of-use questionnaire; AOU-MAL: action research arm test



Robot-assisted upper extremity rehabilitation for tetraplegia

- Safe and feasible
- To reduce assistance provided by therapists
- Lack of RCT study
- Lack of study in acute to subacute stage



Lokomat®

Walkbot®

The Journal of Spinal Cord Medicine 2019:42;142-154

Review Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete Spinal Cord Injury: A Systematic Review with meta-analysis

Ana Valeria Aguirre-Güemez¹, Aberto Isaac Pérez-Sanpablo ¹, Jimena Quinzaños-Fresnedo¹, Ramiro Pérez-Zavala¹, Aída Barrera-Ortiz¹

¹División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación, Ciudad de México, México, ²Laboratorio de análisis de movimiento, Instituto Nacional de Rehabilitación, Ciudad de México, México

Nam et al. Journal of NeuroEngineering and Rehabilitation (2017) 14:24 DOI 10.1186/s12984-017-0232-3

REVIEW

Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review

Ki Yeun Nam^{1†}, Hyun Jung Kim^{2†}, Bum Sun Kwon¹, Jin-Woo Park¹, Ho Jun Lee¹ and Aeri Yoo^{3*}

Journal of NeuroEngineering and Rehabilitation

Open Access

CrossMark

Journal of Clinical Neuroscience 91 (2021) 260-269

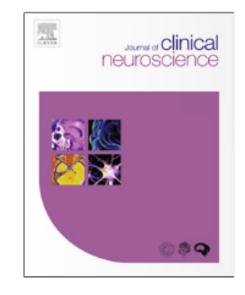
Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jocn

Review article

Robot-assisted gait training in individuals with spinal cord injury: A systematic review for the clinical effectiveness of Lokomat

Anas R. Alashram^{a,*}, Giuseppe Annino^b, Elvira Padua^c


^a Department of Physiotherapy, Isra University, Amman, Jordan

^b Department of Medicine Systems, University of Rome "Tor Vergata", Rome, Italy

^c Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy

Journal of Clinical Neuroscience

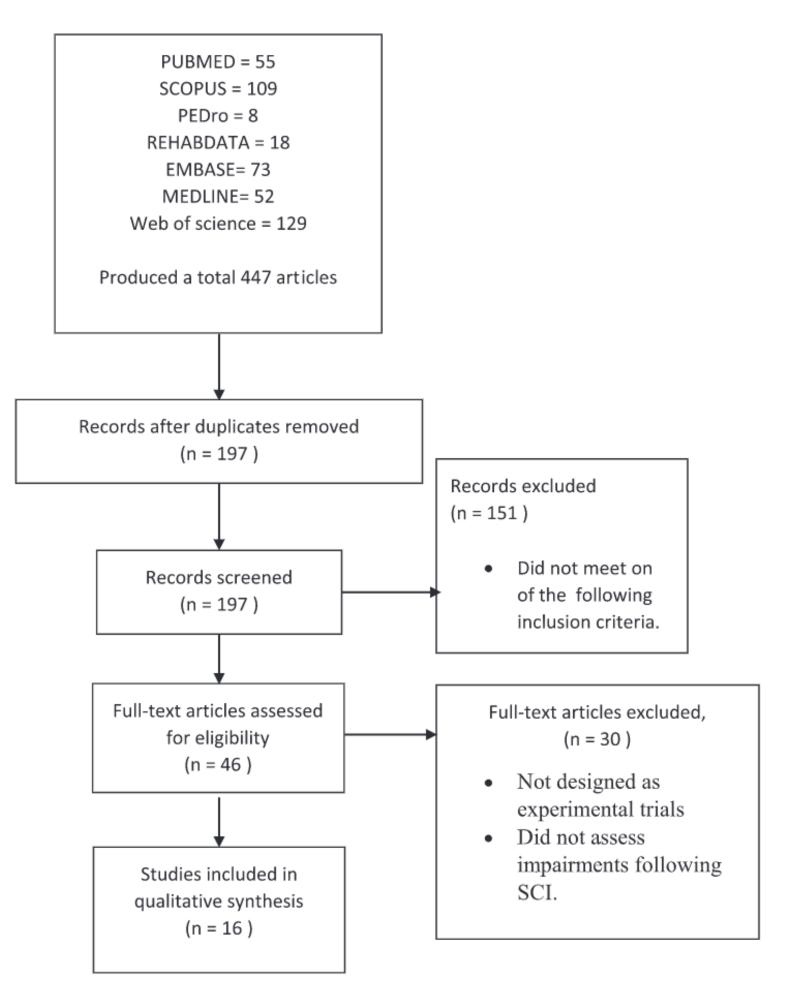


Fig. 1. Summary of literature review process.

• Study design: experimental studies

- chronic (>12 months): 8
- acute (<6 months): 6

acute~chronic: 2

- Onset
- AIS B or C (1)• AIS A~D (1)
- AIS D (2)
- AIS C or D (11)

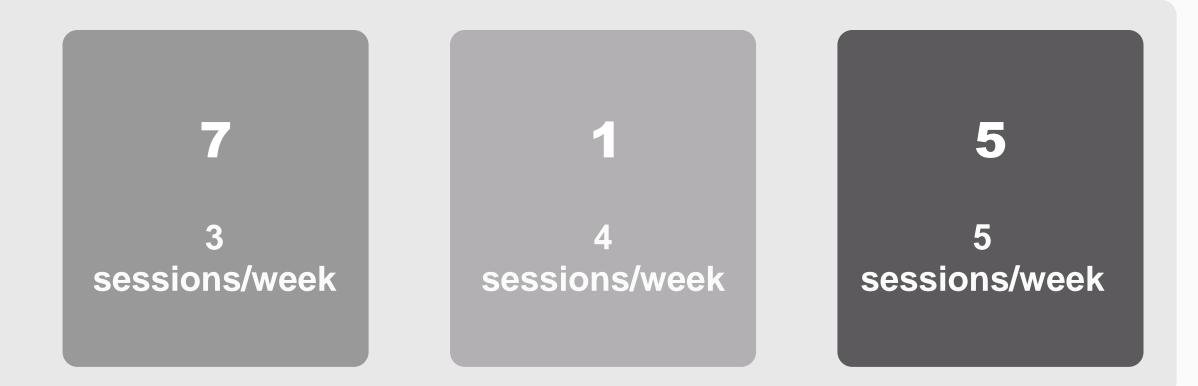
• AIS

Compared with

Conventional therapy (Overground gait training, bodyweight support gait training, Bobath principles..) Transcranial direct current stimulation (tDCS)

Repetitive transcranial magnetic stimulation (rTMS)

Intervention: Lokomat®


Intervention: Lokomat®

Treatment frequency

One study involved only one treatment session.

Treatment duration724 weeks8 weeks

Effects of the Lokomat®

- 10 meters walk test (10MWT, walking speed)
- 6 minutes walk test (6mWT, walking endurance)
- Lower extremity motor score of ISNCSCI (LEMS)
- Walking index for spinal cord injury-II (WISCI-II)
- Functional Independence Measure-Locomotor (FIM-L)

Alcobendas-	Study design: RCT	Exp = RAGT 30 min \times 5/
Maestro et al. 2012 [32]	Participants, <i>n</i> : 80 Gender M/F, <i>n</i> : 50/30 Mean age: 47.5 Level of injury:C2- T12 (UMN) (C = 49, T [T1- T6] = 12, [T7- T12] = 19 ASIA: C,D Time since injury (months):3-6	wk × 6 wk Con = OGT 60 min × 5/ wk × 6 wk Both = CPT
Esclarin-Ruz et al. 2014 [31]	Study design: RCT Participants, <i>n</i> : 88 Gender M/F, <i>n</i> : 64/24 Mean age: 39.58 Level of injury: C2 to L3 (UMN; C = 24, T [T7- T11] = 18) (LMN; T [T12- L1] = 30, L [L2- L3] = 11) ASIA: C, D Time since injury (months): < 6	Exp = RAGT 30 min × 5/ wk × 8 wk Con = OGT 30 min × 5/ wk × 8 wk Both = CPT 60 min × 5/ wk × 8 wk
Field-Fote et al. 2011 [26]	Study design: RCT Participants, <i>n</i> : 74 Gender M/F, <i>n</i> : 51/23 Mean age: 35.46 Level of injury: At or above T10 (UMN) ASIA: C, D Time since injury (months): > 12	Exp = RAGT 60 min \times 5/ wk \times 12 wk Con1 = BWS treadmill- based training with manual assistance 60 min \times 5/wk x 12 wk Con2 = BWS treadmill- based training with stimulation 60 min \times 5/wk \times 12 wk Con3 = OGT with stimulation with BWS 60 min \times 5/wk \times 1 wk

- × 5/ A. Speed = 10-m walk test
 - B. Distance = 6-min walk test
 - C. Functional level = WISCI II, FIM-L
 - D. Leg strength = LEMS
 - E. Spasticity = Ashworth scale
 - F. Pain = VAS
 - Timing: 0, 8 wk

- A. No significant differences (p > .05)
- B. Experimental group improved significantly in distance compared to control group (p < .05)
- C. Experimental group improved significantly in WISCI II and FIM-L scores compared to control group (p < .05)
- D. Experimental group improved significantly in leg strength compared to control group (p < .05)
- E. No significant differences (p > .05)
- F. No significant differences (p > .05)
- × 5/ A. Speed = 10-m walk test
- B. Distance = 6-min walk test
- C. Functional level = WISCI II, 5/ FIM-L 5/
 - D. Leg strength = LEMS
 - Timing: 0, 8 wk

- A. LMN patients improved in speed compared to UMN patients in OGT group but without significant differences (p > .05). No significant differences between LMN patients in both groups (p > .05).
- B. UMN and LMN patients improve significantly in distance after RAGT compared to OGT (p < .05)
- C. No significant differences in WISCI II (p > .05). UMN patients improved significantly in FIM-L after RAGT compared to OGT (p < .05), no significant difference were reported between LMN patients in both groups (p > .05)
- D. UMN and LMN patients improve significantly in strength after RAGT compared to OGT (p < .05)

- × 5/ A. Speed = 10-m walk test B. Distance = 2-min walk test
- C. Leg strength = LEMS ill-
- Timing: 0, 12 wk

(p < .05) B. Experimental group improved significantly in distance compared to control group (p < .05)

A. Speed increased significantly after overground

C. No significant differences (p > .05)

- ill-

Niu et al. 2014 [27]	Study design: RCT Participants, <i>n</i> : 40 Gender M/F, <i>n</i> : 27/13 Mean age: 45.95 Level of injury: above T10 (UMN) (paraplegia = 12, tetraplegia = 28) ASIA: B, C, D Time since injury (months): Exp 8.9 ± 9.9 , Con 7.5 ± 5.5	Exp = RAGT 60 min × 3/ wk × 4 wk Con = no intervention	A B C
Varoqui at al. 2014 [30]	Study design: RCT Participants, n : 30 Gender M/F, n : 22/8 Mean age: 47.37 Level of injury: above T10 (UMN) (C [C2-C7] = 20), (T [T1-T7] = 10) ASIA: C,D Time since injury (months): Exp 11.80 ± 2.54, Con 8.09 ± 1.89	Exp = RAGT 60 min × 3/ wk × 4 wk Con = no intervention	A E E H I • Tim

- A. Speed = 10-m walk test
- B. Distance = 6-min walk test
- C. Functional
- ambulation = TUG
- ming: 0, 1, 2, 4 wk

- A. Experimental group improved significantly in speed compared to control group
- B. No significant differences (p > .05)
- C. Experimental group improved significantly in balance compared to control group (p < .05)

- A. Speed = 10-m walk test
- B. Distance = 6-min walk test
- C. Functional
- ambulation = TUG
- D. ROM = PROM,
- E. Spasticity = MAS
- F. Strength = MVC
- ming: 0, 4 wk

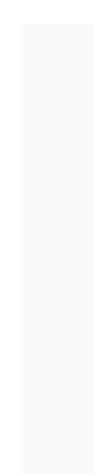
- A. Experimental group improved significantly in speed compared to control group
- B. No significant differences (p > .05)
- C. Experimental group improved significantly in balance compared to control group (p < .05)
- D. Experimental group improved significantly in ankle PROM compared to control group (p < .05)</p>
- E. No significant differences between groups in change of planter-flexor tone (p > .05)
- F. Experimental group improved significantly in MVC_{DF} and MVC_{PF} compared tocontrol group (p < .05)

Robot-assisted gait training (Lokomat®) for spinal cord injury patients

- May improve gait speed, endurance, strength, ROM, and mobility
- Further RCT with long-term follow-ups are needed.

Insufficient evidence for the effect on balance, depression, cardiorespiratory fitness and QOL

Morning Walk®



Grounded end-effector

End-effector type robot-assisted gait training for spinal cord injury patients

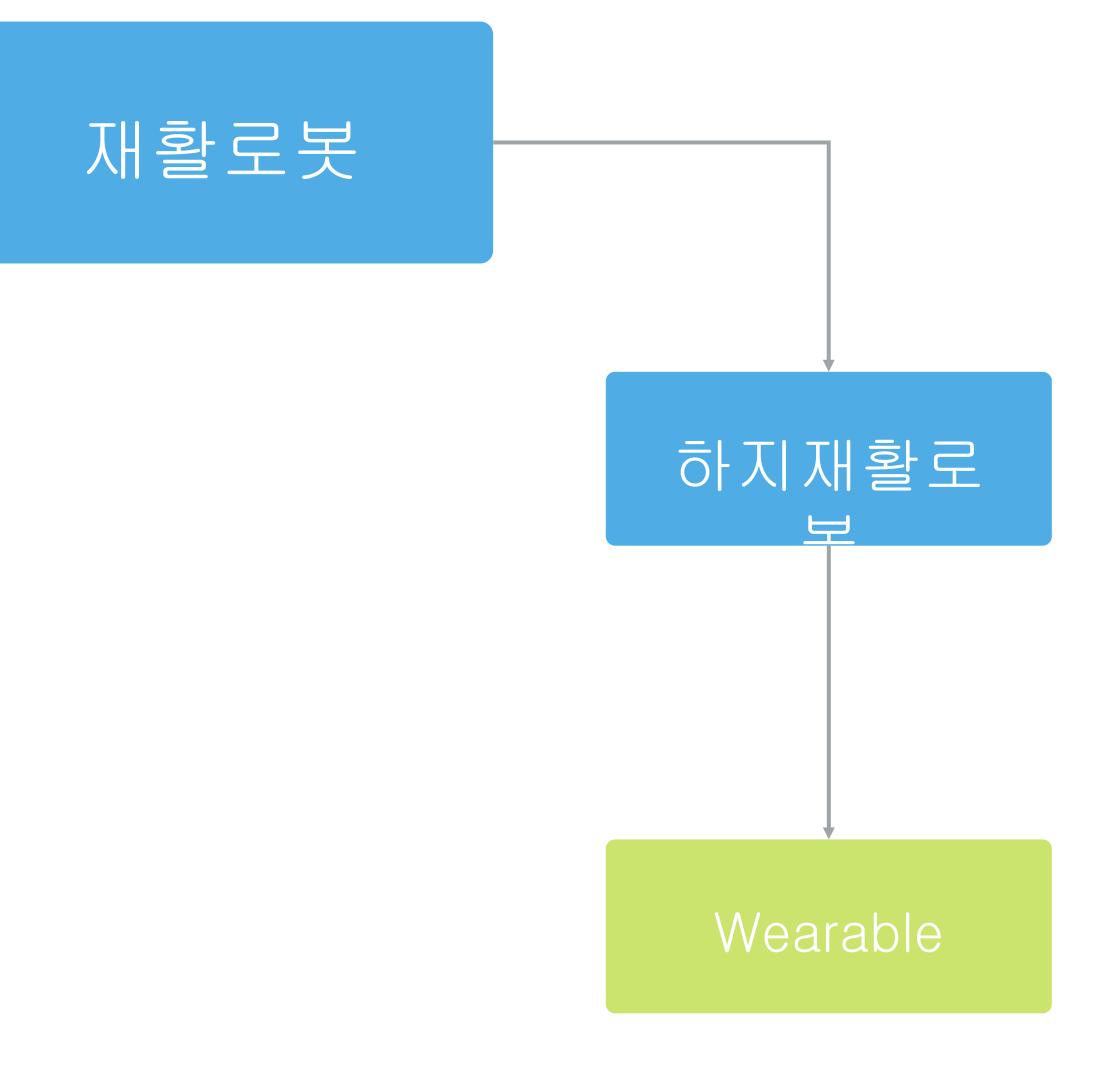
- Total 3 published studies (1 feasibility study, 1 case study, 1 observational study)
- No published RCT studies

Annals of Biomedical Engineering (© 2020) https://doi.org/10.1007/s10439-020-02611-z

Original Article

Robotic Rehabilitation in Spinal Cord Injury: A Pilot Study on End-Effectors and Neurophysiological Outcomes

ROCCO SALVATORE CALABRÒ,¹ SERENA FILONI,² LUANA BILLERI,¹ TINA BALLETTA,¹ ANTONINO CANNAVÒ,¹ ANGELA MILITI,³ DEMETRIO MILARDI,⁴ LORIS PIGNOLO,⁵ and ANTONINO NARO¹


¹IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Ctr. Casazza SS113, 98124 Messina, Italy; ²Padre Pio Foundation and Rehabilitation Centers, San Giovanni Rotondo, Italy; ³Stomatodental Centre, Messina, Italy; ⁴Department of Biomedical Dental Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy; and ⁵Istituto S. Anna, Crotone, Italv

- subacute~chronic (<18 months), AIS C or D patients (16 participants) \bullet
- robot-assisted gait training (RAGT) with GT[®] (end-effector) \bullet
- significant improvements in 10MWT, WISCI-II, and SCIM-III
- observational study

Front Neurorobot 2021:15;723206

Improved Physiological Gait in Acute and Chronic SCI Patients After Training With Wearable Cyborg Hybrid Assistive Limb

Alexis Brinkemper^{1*}, Mirko Aach², Dennis Grasmücke², Birger Jettkant¹, Thomas Rosteius¹, Marcel Dudda³, Emre Yilmaz¹ and Thomas Armin Schildhauer¹

¹ Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany, ² Department of Spinal Cord Injuries, BG University Hospital Bergmannsheil, Bochum, Germany, ³ Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, Essen, Germany

- HAL®Robot Suit
- 15 participants
 - acute~subacute AIS D (5)
 - chronic AIS A (5), AIC C (2), AIS D (3)
- Intervention
 - 5 times/wk over 12 weeks training with HAL®
- Outcome measures
 - 10MWT, 6mWT, timed-up-and-go test, WISCI-II
 - gait parameters

© 2018 EDIZIONI MINERVA MEDICA Online version at http://www.minervamedica.it European Journal of Physical and Rehabilitation Medicine 2019 April;55(2):209-16 DOI: 10.23736/S1973-9087.18.05308-X

ORIGINAL ARTICLE

Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control

Eleonora GUANZIROLI ^{1, 2}*, Maurizio CAZZANIGA ¹, Laura COLOMBO ¹, Sabrina BASILICO¹, Giovanni LEGNANI², Franco MOLTENI¹

¹Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy; ²Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy

*Corresponding author: Eleonora Guanziroli, Biomedical Engineer, Villa Beretta Rehabilitation Center, Valduce Hospital, Via N. Sauro 17, 23845 Costa Masnaga, Lecco, Italy. E-mail: eleonora.guanziroli@gmail.com

- ReWalk®
- 15 chronic AIS A patients
- Intervention
 - three 60-minute sessions/wk over 8 weeks training with HAL®
- Outcome measures
 - 10MWT, 6mWT, time necessary to pass from sitting to standing and start to walk (STS-time)

Powered exoskeleton for spinal cord injury patients

To allow over-ground walking in chronic complete SCI patients

경청해주셔서 감사합니다